skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rmus, Milena"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In reinforcement learning (RL) experiments, participants learn to make rewarding choices in response to different stimuli; RL models use outcomes to estimate stimulus–response values that change incrementally. RL models consider any response type indiscriminately, ranging from more concretely defined motor choices (pressing a key with the index finger), to more general choices that can be executed in a number of ways (selecting dinner at the restaurant). However, does the learning process vary as a function of the choice type? In Experiment 1, we show that it does: Participants were slower and less accurate in learning correct choices of a general format compared with learning more concrete motor actions. Using computational modeling, we show that two mechanisms contribute to this. First, there was evidence of irrelevant credit assignment: The values of motor actions interfered with the values of other choice dimensions, resulting in more incorrect choices when the correct response was not defined by a single motor action; second, information integration for relevant general choices was slower. In Experiment 2, we replicated and further extended the findings from Experiment 1 by showing that slowed learning was attributable to weaker working memory use, rather than slowed RL. In both experiments, we ruled out the explanation that the difference in performance between two condition types was driven by difficulty/different levels of complexity. We conclude that defining a more abstract choice space used by multiple learning systems for credit assignment recruits executive resources, limiting how much such processes then contribute to fast learning. 
    more » « less
  2. The ability to use past experience to effectively guide decision-making declines in older adulthood. Such declines have been theorized to emerge from either impairments of striatal reinforcement learning systems (RL) or impairments of recurrent networks in prefrontal and parietal cortex that support working memory (WM). Distinguishing between these hypotheses has been challenging because either RL or WM could be used to facilitate successful decision-making in typical laboratory tasks. Here we investigated the neurocomputational correlates of age-related decision-making deficits using an RL-WM task to disentangle these mechanisms, a computational model to quantify them, and magnetic resonance spectroscopy to link them to their molecular bases. Our results reveal that task performance is worse in older age, in a manner best explained by working memory deficits, as might be expected if cortical recurrent networks were unable to sustain persistent activity across multiple trials. Consistent with this, we show that older adults had lower levels of prefrontal glutamate, the excitatory neurotransmitter thought to support persistent activity, compared to younger adults. Individuals with the lowest prefrontal glutamate levels displayed the greatest impairments in working memory after controlling for other anatomical and metabolic factors. Together, our results suggest that lower levels of prefrontal glutamate may contribute to failures of working memory systems and impaired decision-making in older adulthood. 
    more » « less
  3. null (Ed.)